Impact of three-dimensional cloud-structures on atmospheric trace gas retrievals

Claudia Emde¹, Huan Yu³, Arve Kylling², Michel van Roozendael³, Bernhard Mayer¹ and Kerstin Stebel²

¹Meteorological Institute, Ludwig-Maximilians-University (LMU), Munich

²Norwegian Institute for Air Research (NILU), Kjeller

³Royal Belgian Institute for Space Aeronomy (BIRA), Brussels

DPG Meeting, Munich, 20 March 2019

Introduction

- Operational retrievals of tropospheric trace gases from space-borne instruments based on 1D radiative transfer neglect
 - 1. clouds scattering into clear regions
 - 2. cloud shadows
- Monte Carlo radiative transfer (MYSTIC-ALIS)
 ⇒ simulation of spectra for realistic 3D model atmospheres
- Application of NO₂ retrieval algorithm on simulated data:

 \Rightarrow estimation of retrieval error due to 3D cloud scattering

MYSTIC simulation with LES clouds

MYSTIC simulation with clouds from UCLA LES model at 8.4 km altitude (C. Klinger, HD(CP)² project).

- Large Eddy Simulation models ⇒ realistic cloud fields
- Monte Carlo radiative transfer (MYSTIC) ⇒ simulation of reflectances, radiances, images ... for LES cloud scenes

3D radiative transfer in high spectral resolution

NO2 retrieval (DOAS) - fit differential optical thickness

 $D(\lambda) = \ln(I_{TOA}(\lambda)) - P_3(\lambda)$

 I_{TOA} : reflectance, spectral range: $\lambda \approx$ 400-500 nm

Radiative transfer requirements:

 \Rightarrow high spectral resolution (resolve characteristic absorption features)

 \Rightarrow high accuracy (absorption signal weak compared to Rayleigh continuum)

Standard Monte Carlo method: computational time extremely high (about 33h for 10⁷ photons/wavelength and 0.1 nm spectral resolution!) _{Claudia Emde (LMU)}

20 March 2019 4 / 15

Absorption Lines Importance Sampling

Trace photons at only one wavelength and calculate full line-by-line spectra

Spectral absorption and scattering included by photon weights Statistical error causes bias (decreasing with \sqrt{N}) over full spectral range, not for each wavelength

Computational time: 1.5 minutes (comparable to DISORT)

C. Emde, R. Buras, and B. Mayer. *ALIS: An efficient method to compute high spectral resolution polarized solar radiances using the Monte Carlo approach.* JQSRT, 2011

Radiative transfer model MYSTIC

Monte carlo code for the phYSically correct Tracing of photons In Cloudy atmospheres (Mayer 2009)

- Special features:
 - Polarized radiative transfer (Emde et al., 2010)
 - VROOM: variance reduction methods (Buras and Mayer, 2011)
 - \Rightarrow radiance calculations for strongly peaked scattering phase functions
 - ALIS method (Emde et al., 2011)
 - \Rightarrow very efficient high spectral resolution calculations
 - complex topography (Mayer et al., 2010)
 - spherical geometry (Emde and Mayer, 2007)
 - box-airmass factors in 3D domain
- Integrated in libRadtran package www.libradtran.org (Mayer and Kylling, 2005, Emde et al. 2016)

Example simulations for LES cloud field

Example simulations for LES cloud field

Impact of cloud scattering in vicinity of clouds

Geometry settings

- nadir observation geometry
- 1x1km² square field-of-view
- solar zenith angle: 50°

Base case cloud settings

- cloud base at 2 km altitude
- cloud top at 3 km altitude
- cloud optical thickness: 10
- cloud droplet effective radius 10 μ m
- optical properties from Mie calculations

Other settings

- surface albedo: 0.1
- no aerosol

Reflectance as a function of distance from cloud edge

- left: cloud scattering into clear region
- right: shadowing

Simulated spectra - VIS

- red and black: spectra for pixels above cloud
- green and blue: spectra for clear pixels
- green line corresponds to pixel from 1-2 km away from cloud edge ⇒ this pixel is used for sensitivity study

Retrieval error - NO2 vertical column density

DOAS retrieval algorithm developed at BIRA applied on synthetic spectra \Rightarrow vertical column density of NO_2

Sensitivity study - NO2 VCD retrieval error

Preliminary results

Further parameters: surface albedo aerosol optical thickness

Summary and Outlook

• Summary:

- Operational trace gas retrievals (e.g. Sentinel-5P) neglect 3D radiative transfer effects
- Pixels classified as "clear" can be influenced by clouds (shadows, in-scattering)
- MYSTIC-ALIS method ⇒ simulation of reflectances in high spectral resolution for realistic 3D atmospheres including clouds
- Sensitivity study: Retrieval error (NO₂ VCD) dependence on distance from cloud edge, solar zenith angle, cloud optical thickness, cloud geometrical thickness

Next steps:

- Investigate sub-pixel inhomogeneity for typical Sentinel-5P footprint (3.5×7 km)
- Perform simulations using realistic LES cloud fields
- ESA Study: "Impact of 3D Cloud Structures on the Atmospheric Trace Gas Products from UV-VIS Sounders"

libRadtran

http://www.libradtran.org 1991 – 2019 Mayer und Kylling, ACP, 2005 Emde et. al, GMD, 2016

spectral range	UV, visible, infrared (250nm-100 μ m)
model geometry	plane-parallel, spherical, three-dimensional
observer position	surface, air-borne, satellite
absorption	quasi-spectral, correlated-k, line-by-line
RT solvers	DISORT, Monte Carlo, twostream,
output quantities	(polarized) radiance, irradiance, heating rate, actinic flux

- Optical properties parameterizations for clouds and aerosols
- Mie tool
- Single scattering lidar and radar simulators
- Validated in various model intercomparison studies
- More than 600 peer-reviewed publications that used libRadtran
- Development partly funded by ESA (ESASLight I+II)